Acoustics Problem #1

The steady-state response of a simple dynamic system to a sinusoidal excitation force isโ€ฆ

F(t)=2.248sin(0.1ฯ€t)lbf

and the resulting displacement response is:

x(t)=0.328sin(0.1ฯ€tโˆ’30ยฐ)ft

where the displacement lags the force by a phase angle ฯ•=30ยฐ.

Determine

  1. the work done by the excitation force inย one minute
  2. the work done by the excitation force inย one second

Solution

Given

  • F0=2.248lbf
  • A=0.328 ft
  • ฯ‰=0.1ฯ€ rad/sec
  • ฯ•=30ยฐ

Work done per cycle

For harmonic excitation, the work done per cycle is Wcycle=ฯ€AF0sinฯ•.

Substitute A=0.328 ftF0=2.248lbf, and sinฯ•=sin(30ยฐ)=ยฝ:

Wcycle= ฯ€(0.328)(2.248)(ยฝ)=1.159 ftโ‹…lbf/cycle

Period

T=2ฯ€ฯ‰=2ฯ€0.1ฯ€=20โ€‰sec

Cycles in one minute: N=6020=3

(a) Work done in one minute

W60s=NWcycle=3.48 ftโ‹…lbf

(b) Work done in one second

Work over an interval is W=โˆซ01F(t)x(t)dt, where แบ‹(t)=Aฯ‰cos(ฯ‰tโˆ’ฯ•).

So, W1s=โˆซ01[F0sin(ฯ‰t)][Aฯ‰cos(ฯ‰tโˆ’ฯ•)]dt

Evaluating the integral for F0=2.248A=0.328ฯ‰=0.1ฯ€ฯ•=30ยฐ gives:

W1s=0.0342 ftโ‹…lbf


Final Answers

  • (a)ย W60s=3.48 ftโ‹…lbf
  • (b)ย W1s=0.0342 ftโ‹…lbf

Leave a Reply

Your email address will not be published. Required fields are marked *